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Motivation

An elastic beam is attached to a rigid body which is assumed
to rotate around its axis and the motion of the beam is
confined to a plane perpendicular to the disk.
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Fig. 1: The disk-beam system.
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Motivation

The system is nonlinear and modeled by a coupled hyperbolic
PDE + ODE

We assume that there is no distributed damping and the
feedback law proposed consists of a linear control torque
applied on the rigid body and a memory type boundary
control force exerted at the free end of the beam.

The aim is to stabilize the system by means of linear controls
where a a finite memory term occurs.
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Model

The system is governed by

ρ(x)ytt + (EI (x)yxx)xx = ρ(x)ω2(t)y , x ∈ (0, `), t > 0,
y(0, t) = yx(0, t) = yxx(`, t) = 0, t > 0,
(EI (x)yxx)x(`, t) = F(t), t > 0,

d

dt

{
ω(t)

(
Id +

∫ `

0
ρ(x)y2(x , t)dx

)}
= T (t), t > 0,

y(x , 0) = y0(x), yt(x , 0) = y1(x), x ∈ (0, `),
ω(0) = ω0 ∈ R.

(1)
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Model

EI (x), ρ(x) and Id are respectively the flexural rigidity, the
mass per unit length of the beam, and the disk’s moment of
inertia.

Moreover, y(x , t) represents the beam’s displacement at time
t with respect to the spatial variable x , whereas ω is the
angular velocity of the disk.

Finally, F(t) and T (t) respectively involve the force control
exerted on the free end of the beam and the torque control to
be applied on the disk through which the system (1) is
stabilized.
Specifically, the aim is to suppress the beam vibrations and
leave the disk rotating with a desired angular velocity $.
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Model

The design and analysis of feedback controls that stabilize the
system (1) has been investigated in many works.

We define the feedback law
F(t) = c>r(t) + αyt(`, t) + β

∫ t−τ1

t−τ2
λ(t − s)yt(`, s) ds,

ṙ(t) = Ar(t) + byt(`, t),
T (t) = −γ(ω(t)−$), $ ∈ R,

(2)
in which α > 0, β ∈ R and γ > 0 are feedback gains.
r ∈ Rn is the actuator vector state, A is an n × n constant
matrix and b, c ∈ Rn are constant vectors. Finally, τ1, τ2 ∈ R
so that 0 ≤ τ1 < τ2 and λ ∈ L∞(τ1, τ2) is the memory kernel.
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Model

Letting u(ζ, t, s) = yt(`, t − ζs), ζ ∈ (0, 1), s ∈ (τ1, τ2), the
closed-loop system is then brought to the form

ρ(x)ytt + (EI (x)yxx)xx = ρ(x)ω2(t)y ,
y(0, t) = yx(0, t) = yxx(`, t) = 0,

(EI (x)yxx)x(`, t) = c>r(t) + αu(0, t, s) + β

∫ τ2

τ1

λ(s)u(1, t, s) ds,

ṙ(t) = Ar(t) + bu(0, t, s),
sut(ζ, t, s) + uζ(ζ, t, s) = 0, (ζ, s) ∈ (0, 1)× (τ1, τ2),

d

dt

{
ω(t)

(
Id +

∫ `

0
ρ(x)y2(x , t)dx

)}
= −γ(ω(t)−$),

y(x , 0) = y0(x), yt(x , 0) = y1(x), ω(0) = ω0 ∈ R,
u(ζ, 0, s) = f0(−ζs), (ζ, s) ∈ (0, 1)× (0, τ2).

(3)
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Well-posedness of the Problem

We assume that the following assumptions are fulfilled:

H.I: The memory kernel satisfies: λ ∈ L∞(τ1, τ2) such
that λ(s) ≥ 0, a. e. in (τ1, τ2).
H.II: EI (x) and ρ(x) are in C 4[0, `] and there exists two
positive constants ρ0 and EI0 such that

0 < ρ0 ≤ ρ(x), 0 < EI0 ≤ EI (x), ∀x ∈ [0, `].
H.III: The desired angular velocity $ satisfies:

|$| < 2

`2

√
3EI0
‖ρ‖∞

.

H.IV: The actuator r obeys the conditions:
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Well-posedness of the Problem

All eigenvalues of the matrix A are in the open left-half plane and
the triplet (A, b, c) is both observable and controllable.
The actuator transfer function G (s) = α + c>(sI − A)−1b is a
strictly positive real function in the sense that there exists a
constant σ > 0 such that α > σ and <{G (i%)} > σ, for any
% ∈ R.

We deduce that for each n × n symmetric positive definite matrix
Q, there exist an n × n symmetric positive definite matrix P, a
constant vector q ∈ Rn and ν > 0 sufficiently small such that:

A>P + PA = −qq> − νQ, (4)

Pb − c

2
=
√
α− σ q. (5)
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Well-posedness of the Problem

Then, let

Hn
c =

{
f ∈ Hn(0, 1); f (0) = fx(0) = 0

}
, for n = 2, 3, · · ·

Consider the state space H defined by

H = H2
c × L2(0, `)× L2

(
(0, 1)× (τ1, τ2)

)
× Rn × R := U × R,

equipped with the real inner products candidates:

〈(y , z , u, r , ω), (ỹ , z̃ , ũ, r̃ , ω̃)〉H = 〈(y , z , u, r), (ỹ , z̃ , ũ, r̃〉U + ωω̃

〈(y , z , u, r), (ỹ , z̃ , ũ, r̃〉U =

∫ `

0

(
EI (x)yxx ỹxx −$2ρ(x)y ỹ + ρ(x)zz̃

)
dx

+|β|
∫ τ2

τ1

sλ(s)

{∫ 1

0
u(ζ, s)ũ(ζ, s)dζ

}
ds + 2r̃>Pr .
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Well-posedness of the Problem

The system can be written in H as a Cauchy problem Φt(t) =

[(
A 0
0 0

)
+ B

]
Φ(t),

Φ(0) = Φ0 = (y0, y1, f0, r0, ω0),
(6)

where z = yt , Φ = (y , z , u, r , ω), and A is a linear operator

D(A) =
{

(y , z , u, r) ∈ H4
c × H2

c × L2
(

(τ1, τ2); H1(0, `)
)
× R;

u(0, ·) = z(`), yxx(`) = 0,

(EI (x)yxx)x(`) = c>r + αz(`) + β

∫ τ2

τ1

λ(s)u(1, s) ds
}

A(y , z , u, r) =
(

z ,− 1
ρ(x)

(
EI (x)yxx

)
xx

+$2y ,−s−1uζ ,Ar + bu(0, ·)
)
.

(7)
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Well-posedness of the Problem

BΦ =
(

0, (ω2 −$2)y , 0, 0,
−γ (ω −$)− 2ω < ρ(x)y , z >L2(0,`)

Id + ‖
√
ρ(x) y‖2

L2(0,`)

)
.

We have:

Theorem 1

Under the assumptions H.I-H.VI and the condition

|β|
∫ τ2

τ1

λ(s) ds ≤ σ < α, (8)

the operator A defined by (7) generates a C0-semigroup of
contractions S(t) on U .
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Well-posedness of the Problem

Proof.

Integration by parts gives

〈Aφ, φ〉U ≤ −
(
σ − |β|

∫ τ2

τ1

λ(s) ds

)
z2(`)

−
(√

α− σz(`)− r>q
)2
− νr>Qr . (9)

for any φ = (y , z , u, r) ∈ D(A).

R(λI −A) = U , for λ > 0.
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Well-posedness of the Problem

Theorem 2

Assume that the assumptions H.I-H.IV hold and the feedback
gains of the force control satisfy the condition (8). Then, for any
initial condition Φ0 ∈ D(A)× R, the system (6) possesses a
unique classical global bounded solution Φ(t) ∈ D(A)× R.
However, if Φ0 ∈ H then the system (6) has a unique mild global
bounded solution Φ(t) ∈ H.

Proof.

A generates a C0-semigroup.

B is differentiable on H.

This leads to a local solution.
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Well-posedness of the Problem

Proof.

Propose the following Lyapunov functional:

V (t) =
Id
2

(ω −$)2 +
1

2
(ω −$)2

∫ `

0
ρ(x)y2dx

+
1

2

∫ `

0
(ρ(x)y2

t + EI (x)y2
xx −$2ρ(x)y2)dx

+
|β|
2

∫ τ2

τ1

sλ(s)

{∫ 1

0
y2
t (`, t − ζs)dζ

}
ds

+ r>Qr . (10)
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Stability of an Uncoupled System

We first establish the uniform exponential stability in U of the
semigroup S(t) by means of the resolvent method:

Theorem 3

Assume that the assumptions H.I-H.IV hold and the feedback
gains of the force control satisfy the condition (8). Then, the
semigroup S(t) generated by A is exponentially stable in U .

Proof.

It suffices to show that
(p1) {iξ; ξ ∈ R} ⊂ ρ(A);

(p2) sup{‖(iδ −A)−1‖U ; δ ∈ R} <∞.
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Proof.

To proceed, we first check:

(p1)a Ker (iξI −A) = {0};
(p1)b R(iξI −A) = U for all real number ξ 6= 0.

Proof of (p2) by contradiction. This implies that there exists
a sequence of real numbers δn →∞ and a sequence of
elements φn = (yn, zn, un, rn) ∈ D(A) satisfying

‖φn‖U = ‖yn‖H2
c

+ ‖zn‖L2(0,`) + ‖un‖L2((0,1)×(τ1,τ2)) + |rn|Cn = 1,
(11)

and
‖(iδnI −A)φn‖U −→ 0, as n→∞. (12)
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Proof.

Equivalently, we have

iδnyn − zn ≡ F n −→ 0 in H2
c , (13)

iδnρ(x)zn+(EI (x)yn
xx)xx −$2ρ(x)yn≡Gn−→0 in L2(0, `),(14)

iδnsun + un
ζ ≡ V n −→ 0 in L2((0, 1)× (τ1, τ2)), (15)

(iδnI − A1)rn − bzn(`) ≡W n −→ 0 in Cn, (16)

yn(0) = yn
x (0) = yn

xx(`) = 0, (17)

(EI (x)yn
xx)x(`) = c>rn + αzn(`) + β

∫ τ2

τ1

λ(s)un(1, s) ds, (18)

zn(`) = un(0, s). (19)
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Proof.

‖(iδnI −A)φn‖U ≥ ν |(rn)∗Qrn|+
∣∣√α− σzn(`)− (rn)∗q

∣∣2
+

(
σ − |β|

∫ τ2

τ1

λ(s) ds

)
|zn(`)|2 , (20)

where the sign ∗ denotes the conjugate transpose.

This, together with (8)-(9) and (12), implies that, as n→∞

zn(`) = un(0, s) −→ 0 in C, (21)

rn −→ 0 in Cn. (22)
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Proof.

Combining (21) with (13), we have: δnyn(`) −→ 0 in C.

Multiplying (15) by λ(s)e−δn(1−ζ) and then integrating with
respect to ζ and s, we have∫ τ2

τ1

λ(s)un(1, s) ds −→ 0 in C, (23)

and hence

(EI (x)yn
xx)x(`) −→ 0 in C, as n→∞. (24)
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Proof.

Amalgamating (13) and (14), we get

(EI (x)yn
xx)xx − ρ(x)($2 + δ2n) yn = iδnρ(x)F n + Gn. (25)

Let

a(x) =

∫ `

x
(ρ(s)/EI (s))1/4 ds, (26)

and χn = 4
√
δ2n +$2. Next, multiply (25) by 1

χn
e−χna(x), integrate

by parts and use interpolation inequality, we obtain

χn yn
x (`) = (δ2n +$2)

1
4 yn

x (`) −→ 0 in C, as n→∞. (27)
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Proof.

Define

k(x) = ek0x − 1, where k0 = max

{
‖ρ′‖∞
ρ0

,
‖EI ′‖∞

EI0

}
. (28)

Then, multiply (25) by k(x) yn
x . Arguing as before, we have

∫ `

0

(
3EI (x)k ′(x)− k(x)EI ′(x)

)
|yn

xx |2 dx

+

∫ `

0

(
k(x)ρ(x)

)′
|
√
δ2n +$2 yn|2dx −→ 0. (29)
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Proof.

Since 3EI (x)k ′(x)− k(x)EI ′(x) and

(
k(x)ρ(x)

)′
are positive

functions in view of (28), it follows from (29) that

‖yn‖H2
c
−→ 0, and ‖zn‖L2(0,`) = ‖δnyn‖L2(0,`) −→ 0. (30)

Lastly, going back to (15), we obtain
‖un‖L2((0,1)×(τ1,τ2)) → 0, as n→∞. This together with (22) and
(30) implies that as n→∞
‖φn‖U = ‖yn‖H2

c
+ ‖zn‖L2(0,`) + ‖un‖L2((0,1)×(τ1,τ2)) + |rn|Cn → 0,

which contradicts (11) and hence (p2) must hold.
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Exponential Stability for the Global System

The main result is:

Theorem 4

Suppose that the assumptions H.I-H.III hold and

|β|
∫ τ2

τ1

λ(s) ds < σ < α. (31)

Then, for any initial data Φ0 ∈ D(A)× R, the corresponding
solution Φ of the closed-loop system (6) exponentially tends to the
equilibrium state (0U , $) in H as t →∞.
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Proof.

Write the solution Φ(t) of the global system (6) stemmed from
Φ0 = (φ0, ω0) ∈ D(A) as follows:

Φ(t) =
(
φ̃(t), ω(t)

)
,

where φ̃(t) = (y , yt , u, r) is the unique solution of the subsystem

φ̃t(t) = Aφ̃(t) + (ω2(t)−$2)Pφ̃(t), (32)

where P is the bounded operator defined by

P(f , g , h, v) = (0, f , 0, 0), for any (f , g , h, v) ∈ U .
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Proof.

In turn, ω(t) is the solution of the ODE

d

dt
ω(t) =

−γ (ω −$)− 2ω < ρ(x)y , yt >L2(0,`)

Id + ‖
√
ρ(x) y‖2

L2(0,`)

, (33)

• Use the variation of constants formula to (32).

• Use Theorem 3 (exponential stability of S(t)).

• Apply Gronwall’s Lemma to (32).

=⇒ Exponential stability of the solutions φ̃ of (32).

• Use (33) to get the exponential stability of ω −$ in R.
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Numerical simulations

• The initial conditions y(x , 0) = x2

2 , yt(x , 0) = 0, w(0) = 0, and
f (ζ) = ζ;
• The relaxation function λ(s) = e−s , τ1 = 0.1, and τ2 = 0.2;
• The constant parameters ` = Id = γ = 1.
⇒ The condition H.III is: $ <

√
6.

First, let α = β = 1 and vary $.
Examining Figure 2, we notice from a)-c) that the beam’s
displacement y(x , t) decays in a short time to 0, except for d), as
the condition H.III is violated.
This outcome is confirmed in Figure 3 for the angular velocity ω(t)
which converges to the desired $ except in d).
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the condition H.III is violated.
This outcome is confirmed in Figure 3 for the angular velocity ω(t)
which converges to the desired $ except in d).
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Fig. 2: Time evolution of the displacement y(x,t). a) $=2; b) $=2.5;
c) $=2.6; d) $=3.
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Fig. 3: Time evolution of the angular velocity w(t). (a) $=2; (b) $=2.5;
(c) $=2.6; (d) $=3.
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Next, choose α = 1 and fix $ = 1 while β takes different values
(β = 1, 5, 10, 15). It is easy to check that (31) becomes |β| < 11.6.
One can observe from Figure 4 a)-c) that the angular velocity ω(t)
tends to $ = 1 since (31) is satisfied. In turn, the convergence of
ω(t) is lost in Figure 4 d) as (31) is violated.
This observation is also clear from Figure 5 which depicts the time
evolution of the solution of y(x , t) for different values of β. These
results are in line with the findings of Theorem 4.
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Fig. 4: Time evolution of the angular velocity w(t). (a) β=1; (b) β=5;
(c) β=10; (d) β=15.
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Fig. 5: Time evolution of the displacement y(x,t). (a) β=1; (b) β=5;
(c) β=10; (d) β=15.
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